MATH 32 FALL 2012

 MIDTERM 1 - SOLUTIONS(1) (6 points) Find all values of x satisfying the inequality

$$
\frac{x+2}{x-1}<2
$$

Solution: We'll multiply both sides by $x-1$.
Case 1: $x-1 \geq 0$. This happens when $x \geq 1$. Then we have

$$
\begin{aligned}
x+2 & <2(x-1) \\
x & <2 x-2-2 \\
-x & <-4 \\
x & >4
\end{aligned}
$$

Case 2: $x-1<0$. This happens when $x<1$. Then we have

$$
\begin{aligned}
x+2 & >2(x-1) \\
x & >2 x-2-2 \\
-x & >-4 \\
x & <4
\end{aligned}
$$

So when $x \geq 1$, the solutions are all $x>4$. When $x<1$, the solutions are all $x<4$. Putting these together, the solutions are $(-\infty, 1) \cup(4, \infty)$.
(2) (12 points) Let $f(x)=x^{2}-4 x+6$. The graph of f is a parabola. Find an equation for the line containing the vertex of this parabola and its y-intercept. For partial credit, make sure to clearly write down the vertex and y-intercept once you have found them.

Solution: To find the vertex, complete the square. $f(x)=(x-2)^{2}-4+6=(x-2)^{2}+2$. So the vertex is $(2,2)$.

To find the y-intercept, plug in $0 . f(0)=0^{2}-4 \cdot 0+6=6$. So the y-intercept is $(0,6)$. The slope of the line containing $(2,2)$ and $(0,6)$ is $\frac{6-2}{0-2}=\frac{4}{-2}=-2$.
In point-slope form, the line is given by $y-6=-2(x-0)$, or $y=-2 x+6$.
(3) Let f be the function whose graph is pictured below:

(a) (6 points) Inferring from the picture, what are the domain and range of f ?
(b) (6 points) Sketch a graph of the function

$$
g(x)=f\left(\frac{x}{2}\right)-2
$$

Be sure to clearly label your axes.

Solution:

(a) Domain: $[0,2]$, Range: $[0,2]$.

(4) Let $f(x)=\sqrt{x-1}$ and $g(x)=x^{3}-x^{2}-2 x+1$.
(a) (6 points) What is the domain of the composition $g \circ f$?
(b) (6 points) Find a formula for the composition $(f \circ g)(x)$.
(c) (6 points) What is the domain of $f \circ g$?

Solution:

(a) The domain of g is all real numbers, so the only problems come from f. The domain of f is $[1, \infty)$, so the domain of $g \circ f$ is also $[1, \infty)$.
(b) $(f \circ g)(x)=\sqrt{\left(x^{3}-x^{2}-2 x+1\right)-1}=\sqrt{x^{3}-x^{2}-2 x}$.
(c) The domain is all values of x which do not result in taking the square root of a negative number, that is, all x such that $x^{3}-x^{2}-2 x \geq 0$.
Factoring this polynomial, we want $x\left(x^{2}-x-2\right)=x(x-2)(x+1)>0$.

	$(-\infty,-1)$	$(-1,0)$	$(0,2)$	$(2, \infty)$
x	-	-	+	+
$(x-2)$	-	-	-	+
$(x+1)$	-	+	+	+
Total:	-	+	-	+

So the domain is $(-1,0) \cup(2, \infty)$.
(5) (6 points) Write $\left(2 x^{2}\right)^{-2}-2\left(x^{2}\right)^{-2}$ as a single fraction.

Solution:

$$
\frac{1}{\left(2 x^{2}\right)^{2}}-\frac{2}{\left(x^{2}\right)^{2}}=\frac{1}{4 x^{4}}-\frac{2}{x^{4}}=\frac{1}{4 x^{4}}-\frac{8}{4 x^{4}}=\frac{-7}{4 x^{4}}
$$

(6) (6 points) Give an example of a polynomial of degree 5 which has zeros 0,2 , and 4 , and no other zeros. You may write the answer in factored form.

Solution: $x^{3}(x-2)(x-4)$.

