MATH 32 FALL 2012 MIDTERM 1 - SOLUTIONS

(1) (6 points) Find all values of x satisfying the inequality

$$\frac{x+2}{x-1} < 2$$

Solution: We'll multiply both sides by x - 1. Case 1: $x - 1 \ge 0$. This happens when $x \ge 1$. Then we have

$$x + 2 < 2(x - 1)$$
$$x < 2x - 2 - 2$$
$$-x < -4$$
$$x > 4$$

Case 2: x - 1 < 0. This happens when x < 1. Then we have

$$x + 2 > 2(x - 1)$$
$$x > 2x - 2 - 2$$
$$-x > -4$$
$$x < 4$$

So when $x \ge 1$, the solutions are all x > 4. When x < 1, the solutions are all x < 4. Putting these together, the solutions are $(-\infty, 1) \cup (4, \infty)$.

(2) (12 points) Let $f(x) = x^2 - 4x + 6$. The graph of f is a parabola. Find an equation for the line containing the vertex of this parabola and its y-intercept. For partial credit, make sure to clearly write down the vertex and y-intercept once you have found them.

Solution: To find the vertex, complete the square. $f(x) = (x-2)^2 - 4 + 6 = (x-2)^2 + 2$. So the vertex is (2, 2).

To find the y-intercept, plug in 0. $f(0) = 0^2 - 4 \cdot 0 + 6 = 6$. So the y-intercept is (0, 6). The slope of the line containing (2, 2) and (0, 6) is $\frac{6-2}{0-2} = \frac{4}{-2} = -2$.

In point-slope form, the line is given by y - 6 = -2(x - 0), or y = -2x + 6.

(3) Let f be the function whose graph is pictured below:

- (a) (6 points) Inferring from the picture, what are the domain and range of f?
- (b) (6 points) Sketch a graph of the function

$$g(x) = f\left(\frac{x}{2}\right) - 2.$$

Be sure to clearly label your axes.

Solution:

(4) Let $f(x) = \sqrt{x-1}$ and $g(x) = x^3 - x^2 - 2x + 1$. (a) (6 points) What is the domain of the composition $g \circ f$?

- (b) (6 points) Find a formula for the composition $(f \circ g)(x)$.
- (c) (6 points) What is the domain of $f \circ g$?

Solution:

- (a) The domain of g is all real numbers, so the only problems come from f. The domain of f is $[1,\infty)$, so the domain of $g \circ f$ is also $[1,\infty)$.
- (b) $(f \circ g)(x) = \sqrt{(x^3 x^2 2x + 1) 1} = \sqrt{x^3 x^2 2x}.$
- (c) The domain is all values of x which do not result in taking the square root of a negative The domain is all values of x which do not result number, that is, all x such that $x^3 - x^2 - 2x \ge 0$. The twing this polynomial we want $x(x^2 - x - 2) = x(x - 2)(x + 1) > 0$.

Factoring this polynomial, we want $x(x^2 - x - 2)$					
	$(-\infty,-1)$	(-1,0)	(0,2)	$(2,\infty)$	
x	_	_	+	+	
(x-2)	_	_	—	+	
(x+1)	_	+	+	+	
Total:	_	+	_	+	
the domain is $(-1, 0) \sqcup (2, \infty)$					

So the domain is $(-1, 0) \cup (2, \infty)$.

(5) (6 points) Write $(2x^2)^{-2} - 2(x^2)^{-2}$ as a single fraction.

Solution:

$$\frac{1}{(2x^2)^2} - \frac{2}{(x^2)^2} = \frac{1}{4x^4} - \frac{2}{x^4} = \frac{1}{4x^4} - \frac{8}{4x^4} = \frac{-7}{4x^4}$$

(6) (6 points) Give an example of a polynomial of degree 5 which has zeros 0, 2, and 4, and no other zeros. You may write the answer in factored form.

Solution: $x^{3}(x-2)(x-4)$.